CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

THIS LECTURE: INTRODUCTION

Instructor: Abdou Youssef

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

e Describe basic algorithmic definitions

Explain and begin to write pseudo code (pseudo-language)

Differentiate between functions and procedures

Show the structure of valid recursion

Explain what analysis of algorithms means, and begin to utilize related
elements, including

 The big-O notation

e The Master Theorem

e Stirling’s Approximation

e Valuable summation formulas widely used in analysis of algorithms

OUTLINE

* Definitions and characteristics of algorithms, functions and procedures
 What is design of algorithms?

 What is analysis of algorithms?

 Pseudo language for expression algorithms

* Recursion

e Asymptotics (Big-O, Big-(}, and Big-0 notations): definitions

e Rules, theorems and formulas to help you derive Big-O for time
complexity functions

PRELIMINARIES

e Purpose of the course:

e Learn the design and analysis of algorithms

 Each keyword will be defined next
e Algorithm
e Design

e Analysis

DEFINITION AND CHARACTERISTICS OF
“ALGORITHM”

e Definition of Algorithm
» A precise statement to solve a problem on a computer

» A sequence of definite instructions to do a certain job

e Characteristics of Algorithms and Operations

» Definiteness of each operation (i.e., clarity, unambiguity, single meaning)

» Effectiveness (i.e., doability on a computer]
(y P) Contrast with a program:
e Termination in a finite amount of time Does a program have to terminate?

e An algorithm has zero or more input, one or more output B3Ehigle)CXeIE1le(ehaliiyRiEL
takes O input?

e Special forms of algorithms:

e Functions and procedures More on that later .

CS 6212 Design and Analysis of Algorithms Introduction

DESIGN
OF ALGORITHMS

e To design (an algorithm) for a problem means to:

e Devise a method, using potentially a standard design technique, for solving
the problem

« Expressthe design (in a pseudo language, flowchart, etc.)

e Validate the design/algorithm:Proof of correctness

 Note:

 Implementation of algorithm often means coding it in a high-level
programminglanguage like C/C++,java, Python, etc.

e Bulk of the course:learning standard algorithm-design techniques

DESIGN TECHNIQUES
THAT WILL BE COVERED IN THIS COURSE

e Divide and conquer

e The greedy method
 Dynamic programming
 Graph traversal

e Backtracking

e Branch and bound

ANALYSIS
OF ALGORITHMS

What does “analysis’” mean in general? (not just in the context of algorithms)

Analysis of an algorithm means:

 Determination time and space (i.e.,memory) requirements of the algorithm

since memory has become abundant and cheap,

e Analysis of algorithmsis often reduced to just time analysis

Fancy terms:
 Time complexity analysis: determine the time requirements of an algorithm

e Space complexity analysis: determine the space/memory requirements of an algorithm

Complexity analysis is usually expressed in Big-O
e giving only rough estimates More on Big-O later

» Caring more about asymptotic growth (i.e., growth trend as input size grows large)

8

CS 6212 Design and Analysis of Algorithms Introduction

EXPRESSION OF ALGORITHMS
-- PSEUDO LANGUAGE SYNTAX --

e Notes:

e Words in bold are reserved words

« We don’t care if instructions are ended with semicolons (;) butitis preferred

e Variable declaration:

integer x,y; or int x,v;

real x,v; or float x, y; or double x,y;

boolean a, b; or bool a, b;

character z; or char z;

string s;

generic x; // if don’t know/care about specific type, or if code works on several types
Arxrrays: intA[l:n],B[4:10]; char C[1:n]; and the like.

e Operations: +,-, *,/, ++,--, % (or mod or modulo), and (&, &&),or (|, | |), not

* Relations: <, <=,>,>=,

==,1= (or %)

PSEUDO LANGUAGE
- ASSIGNMENTS -

e Assignments:
e X =Expression; or X := Expression; or X <& Expression;

« Xop= Expr; // means:X = X op Expr; opcanbe:+,-,%,/

 Examples:
e x=1+3%4;
* y=2%x-5;
o z=z+1;
e x+=05; //same as:x=x+5;

» x=funct(a,b,c); //function call to a function “funct”. More on that later

10

CS 6212 Design and Analysis of Algorithms Introduction

PSEUDO LANGUAGE
- CONTROL STRUCTURES: CONDITIONS -

If condition then

a sequence of statements;
[else

a sequence of statements;]
endif

Note: Things between brackets [...] are optional

if conditionlthen

a sequence of statements;
elseif condition2 then

a sequence of statements;
elseif condition k then

a sequence of statements;
[else

a sequence of statements;]
endif

case X:
Valuel: statements; [break;]

Valuek: statements; [break;]
endcase

case:
Cond1: statements; [break;]

Condk: statements; [break;]
[Default: statements; [break;]]
endcase 11

CS 6212 Design and Analysis of Algorithms

Introduction

PSEUDO LANGUAGE
- CONTROL STRUCTURES: LOOPS -

while condition do loop

a sequence of statements; a sequence of statements;
endwhile until condition;
fori=mtondo for i=m to n [step d] do

a sequence of statements; a sequence of statements;
endfor endfor

12

CS 6212 Design and Analysis of Algorithms Introduction

PSEUDO LANGUAGE
-- INPUT-OUTPUT --

e Input

 read(X); //Xisavariable or array or even an elaborate structure. We’ll rarely use it

e Output
e print(data);

» write(data,file); // data can numeric or strings

13

CS 6212 Design and Analysis of Algorithms Introduction

PSEUDO LANGUAGE
-- FUNCTIONS AND PROCEDURES: DEFINITION --

 Function: An algorithm that
» takes zero or more input parameters,
» returns explicitly one output to the calling algorithm,and

e can be called by other algorithms, which must provide the input parameters

 Procedure: An algorithms that
» takes zero or more input parameters,and

e computes one or more outputs by
e writing into global variables (aka, side effect), and/or

e Storing output in output parameters.

e can be called by other algorithms, which must provide the input and output parameters

 More details and examples will follow after we see the pseudo-language .

CS 6212 Design and Analysis of Algorithms Introduction

PSEUDO LANGUAGE
-- FUNCTIONS AND PROCEDURES: SYNTAX --

function name(parameters)

I/ ok if you use “func” instead of “function”

begin /I Ok to enclose code with braces {...} instead of begin ... end

variable declarations;
sequence of statements;
return (value);

end name

procedure name(input params; output params; In-out params)

begin

I/ Ok if you use “proc” instead of “procedure”

I/ Ok to enclose code with braces {...} instead of begin ...

end

variable declarations:;
seguence of statements;
end name

CS 6212 Design and Analysis of Algorithms

15

Introduction

PSEUDO LANGUAGE
-- FUNCTIONS AND PROCEDURES: EXAMPLES --

function max(A[1:n])
begin
generic x=A[1]; // max so far
Int I
for =2 to ndo
If (x<A[i]) then
x=All[;
endif
endfor
return (x);
end max

/l observe the “return”

procedure max(input A[1:n]; output M)
begin
Int I;
M=A[1];
for i=2 tondo
If (M<A[i]) then
M=A[l];
endif
endfor // output Is stored in M
end max // observe: no “return” statement

CS 6212 Design and Analysis of Algorithms

16

Introduction

PSEUDO LANGUAGE
-- ANOTHER PROC. EX.: IN-OUT PARAMETERS --

Procedure swap(in-out x,y) // swaps the values of x and y in place
Begin

generic temp;

temp=x;

X=Y;

y=temp;

end swap

17

CS 6212 Design and Analysis of Algorithms Introduction

RECURSION
-- DEFINITION AND STRUCTURE --

 Definition: A recursive algorithm is an algorithm that calls itself on “smaller” input
(smaller in size or value(s) or both).

e Structure of recursive algorithms:
Algorithm name(input)
begin
basis step; // for when the input is the smallest (in size/value); no calls to name(...).

name (smaller input) // A recursive call: the same algorithm name appears in the body

// there can be more statements and more recursive calls here

// the result of each recursive call is called a subsolution

Combine subsolutions; // or process subsolution(s) further

end
18

CS 6212 Design and Analysis of Algorithms Introduction

RECURSION
-- EXAMPLE--

function max(input A[i:j]) // finds the max of A[1],A[i+1],A[i+2],... , A[]j]
begin
generic x,V;
if (i==j) then //input size is 1, which is the smallest
return A[i];
endif
int m=(i+j)/2;
x=max(A[1,m]); // recursive call returning max of 15t half of the array
y=max(A[m+1,j]); // recursive call returning max of 2™ half of the array
//next, merge the two sub-solutions into a global solution
if (x<y) then
return y;
else
Yeturn x;
endif

end max

VALIDATION OF ALGORITHMS

e Validation: Proof of Correctness

e Often through proof by induction on the input size, such as in:

* Recursive algorithms

Divide and conquer algorithms

Greedy algorithms

Dynamic programming algorithms

Sometimes when proving optimality of solutions

e Also, deductive methods of proofs.

ANALYSIS OF ALGORITHMS
-- DEFINITION AND PURPOSE --

« What: estimation of time and space (memory) requirements of the
algorithm

 Reason/Purpose
» Early estimation of performance to see if the algorithm meets speed requirements before
any further investment of effort into the algorithm (i.e.,before implementation))
 If the algorithm is not fast enough, the designer must come up with faster algorithms
 Complexity analysisis a way for comparing algorithms.:
e one (or several competing designers) may design alternative algorithms for the same problem

e you need to determine which to choose.

» typically the fastest algorithm (and/or least demanding in memory) is chosen.

ANALYSIS OF ALGORITHMS
-- BASIC HOW-TO --

e Time complexity T (n):
 Number of operations in the algorithm, as a function of the input size.

« Random access memory (RAM) model: Each of the arithmetic/Boolean operations and each
of the relations (e.g.,comparisons) are counted as one operation

e Space complexity S(n): number of memory words needed by the algorithm

* Example: | fynction max(A[L:n]) Time analysis:
begin e n-1 comparisons
generic x=A[1]; // max so far e n assignments
fori=2tondo e Thus: T(n)=(n-1)+n=2n-1
If (x<A[i]) then
x=All[; Space analysis:
endif e Only one variable declared: x
endfor e Thus: S(n)=1
return (x); o If take input size into account:
end max S(n)=n+ 1

ANALYSIS OF ALGORITHMS
-- ART OF ASYMPTOTIC ESTIMATION --

Since analysis is to determine if alg is fast enough or to choose b/w competing algs:
* the time analysisneed not be very accurate (down to the exact number of operations)

e rather,an approximation of time is sufficient, and is often more convenient to derive

Also, since speed usually matters more when input size n is large
e we are more concerned about the “order of growth” of the time function T'(n), or as typically
called, the asymptotic behavior of the T (n).
Since computers vary in speed from model to model and from generation to
generation, and the variation is by a constant factor (with respect to input size):
 we can (and should) ignore constant factors in time estimations, and

» focus on the order of growth rather than the precise time in micro/nano-seconds.

Therefore,a notation for approximation, for being “carefully careless”,is needed:Big-O

ASYMPTOTICS AND BIG-O NOTATION

* Definition:let f(n) and g(n) be two functions of n (n is usually the input size). We say
fn) =0@@m)

if 3 an integer n, and a positive constant k such that |f(n)| < k|g(n)| Vn = n,.

J: there exists
« Examples:

V: for every

e 3n+1=0(n?)since3n+1<3n? Yn=2.ny= 2,k =3.

f(m) =3n+1,gm) =n?|f(n)| <3|g(n)| Vn= 2

e 3n+6 =0(n) because3n+6 <4n Vn=6.ny = 6,k = 4.

f(n) =3n+6,gM) =n|f(n)]| < 4|gn)| vn=6

24

CS 6212 Design and Analysis of Algorithms Introduction

ASYMPTOTICS AND BIG-() NOTATION

* Definition:let f(n) and g(n) as above. We say that

f(n) =0(gn))

if 3 an integer n, and a positive constant k such that |f(n)| = k|g(n)| Vn = n,.

« Examples:

. §n2 = Q(n) beca.use%n2 >n vVn=3.ng=3k=1.

1
fFm) =3n?,9() = n,If@)] = |g(n)| v > 3

e 3n+6 =Q(n) because3n+6=>3nVn=>1.ny, =1,k = 3.

CS 6212 Design and Analysis of Algorithms

fn) =3n+6,g0) =n|f(n)] = 3lg)|Vn=1

25

Introduction

ASYMPTOTICS AND BIG-0 NOTATION

* Definition:let f(n) and g(n) as above. We say that
fn) =06(gm)

if f(n) = 0(g(n)) and f(n) = Q(g(n)). That is,
if 3 an integer ny, and two positive constant k; and k, such that
kilgm)| < |f(W)| < kzlg(m)| Vn = n,.
e Example:3n+ 6 = 0(n) because 3n+ 6 = 0(n) and 3n + 6 = (U(n) as seen above

ASYMPTOTICS NOTES
-- USE OF BIG-O, O AND O --

e For most of the semester, we will be using the Big-O notation, but not much the Big-(}
or the Big-0

e The Big-() or the Big-0 will be used in Lower Bound Theory near the end of the
semester

27

CS 6212 Design and Analysis of Algorithms Introduction

BIG-O NOTES

e Observation (Transitivity of the Big-0):

» If f(n) = 0(g(n)) and g(n) = 0(h(n)), then f(n) = 0(h(n))
 Proof: An exercise

 Example:
e Take f(n) =3n+4,g(n) =n,h(n) =n?
e f(n)=0(g(n)),i.e.,3n+4=0(n)because3dn+4<7nvn=1lie.,|f(n)|<7|gn)|lvn=>1
e g(n) = O(h(n)),i. e.,n = 0(n?) becausen <n’vn=>1
e f(n) =0(h(n)),i.e.,3n+4 = 0(n?). (You can verify that3n + 4 < 7n? vn > 1)
* Question:whichis preferable (more informative) to say:
e 3n+4=0(n),or
e 3n+4=0(n?)?

USE OF BIG-O IN COMPLEXITY ANALYSIS

Given an algorithm that you want to analyze

You derive an estimate of its time complexity, T(n), as a (possibly messy) expression
of input size n

e Example:T(n) = 3n?7 + nyn+ 7nlogn

View the T'(n) as your f(n) and go find a much simpler function/expression g(n)
such that f(n) = 0(g(n)) [Choose the tightest and simplest g (n) you can find]

« Example:for T(n) = 3n? + nyn + 7nlogn, take g(n) = n?
 Exercise:show that 3n? + n\yn + 7nlogn < 11n?
 As aresult,youcan conclude that T(n) = 0(n?)

« Of course, one can also show that T(n) = 0(n3)
Whichis better to say:T(n) = 0(n®) or T(n) = 0(n3)? Why?

BIG-O
-- THEOREM TO HELP YOU FIND A GOOD g(n) --

e Theorem:Let f(n) = a,,n™ + a,,_yn™ 1 + -+ a;n' + a, be a polynomial (in n) of
degree m, where m is a positive constant integer, and a,,, a,,_1, ..., g are constants.
Then f(n) = 0(n™).

e Proof:

IfM)| < lamIn™ + |apm—1 ™ + -+ |ag|n' + |ag]
< |la,|n™ + |a,_1|n™ + -+ |a In™ + |ay|n™
< (lam| + lam=1| + - + |ag [+|apgDn™ < kn™

where k = |ay,| + |am—1]| + -+ |a1|+]|ap| and n = 1.

Therefore, by definition, f(n) = 0(n™). Q.E.D.

30

CS 6212 Design and Analysis of Algorithms Introduction

BIG-O
-- A RULE OF THUMB TO FIND A GOOD g(n) --

* General rule of thumb: If the time T(n) is a sum of a constant number of terms, you
can:

* keep the largest-order term,
e drop allthe other terms,
e drop the constant factor of the largest order term,

» and thus get a simple Big-O form for T'(n).
e Example:If T(n) = 3n%>” + nyn + 7nlog n,then T(n) = 0(n*’). Why?
e nyn<n.n=n?<n?’
e nlogn <n.n=n?<n?7
e Therefore:3n?7 + nyn+ 7nlogn < 3n?7+n?’+7n%7 = 11n?7,i.e.,|T(n)| < 11|n?7|vn =1

e Therefore:T(n) = 0(n?7)

* Question: In the rule of thumb above, can you drop a variable number of terms?

31

CS 6212 Design and Analysis of Algorithms Introduction

BIG-O
-- TIME OF RECURSIVE ALGORITHMS --

* The time complexity of a recursive algorithmis often easier to calculate by:

1. deriving a recurrence relation (i.e., express T(n) intermsof T(n — 1) or T(n/2) or
or T(m) for some m < n), and then

2. solve the recurrence relation

e You will learn how to solve recurrence relations in this course

o Still, there is a theorem, the Master Theorem

» helpful for solving recurrence relations that emerge in time complexity analysis of many

recursive (e.g.,divide and conquer) algorithms
32

CS 6212 Design and Analysis of Algorithms Introduction

BIG-O
-- THE MASTER THEOREM--

 The Master theorem:Let a > 1 and b > 1 be two constants, f(n) a function, and T'(n) a
function of non-negative n defined by the following recurrence relation:

n

b

where n, is some constant, and the value of T(n) for n < n, is < some constant c. The

T(n) = aT() + f(n) forn > n,
precise values of those n, and ¢ won’t matter. Note that g is taken to mean [gj or [%].

Then T (n) has the following asymptotic bounds:

Please brush up
o If f(n) = 0(nl°8v2 ~€) for some constant € > 0, then T(n) = O(n'°8»2), on logarithms

o If f(n) = O(nl°8r%), then T(n) = O(n'°8v%ogn).

By default,logis base 2:logn = log, n
o« If f(n) = Q(nl°8p2+€) for some constant € > 0,and if af (g) < cf(n) for some constant c<1 for

all sufficientlylarge n,then T(n) = G)(f (n)).

33

CS 6212 Design and Analysis of Algorithms Introduction

HELPFUL FORMULAS FOR BIG-O

n
e Stirling’s Approximation: n! = +2nrn (g) , wWhere e=2.718... is the base of natural logarithm

¢ Useful summation formulas:

e 14243+ 4n="000
n=1xXx2X3X--Xn
. 12+22+.“+n2 :n(n+1)(2n+1) (Tl) 0 n!
° k) = ki (n—k)!

o 1842k 4+ ...+ n¥ = 0(n**1), where kis a positive constant integer
TL+1_1

. 1+x+x2+x3...+x”=xx_1 forallx # 1.

e 14+ 2x+3x%...+nx"v 1= nx""'l(—x(_nl-l-;)x"+1, for all x # 1.

° n_ (M ng0 n n-15,1 n n—2un2 n n—kk n 0pln
(a+ b) —(n)a b +(n_1)a b +(n_2)a b= + +(k)a b™ + +(0)a b

34

CS 6212 Design and Analysis of Algorithms Introduction

PRACTICE EXERCISES

 Exercise: Prove the summation formulas (on the previous slide) by induction on n

 Note:don’t turn in this exercise.Rather,it is just for your practice

	CS 6212 Design and Analysis of Algorithms��This Lecture: Introduction
	Objectives of this Lecture
	Outline
	Preliminaries
	Definition and Characteristics of “Algorithm”
	Design �of Algorithms
	Design Techniques �That will be covered in this course
	Analysis �of Algorithms
	Expression of Algorithms �-- Pseudo Language Syntax --
	Pseudo Language�- Assignments -
	Pseudo Language�- Control Structures: Conditions -
	Pseudo Language�- Control Structures: Loops -
	Pseudo Language�-- Input-Output --
	Pseudo Language�-- Functions and Procedures: Definition --
	Pseudo Language�-- Functions and Procedures: Syntax --
	Pseudo Language�-- Functions and Procedures: Examples --
	Pseudo Language�-- Another Proc. Ex.: in-out PArameters --
	Recursion�-- definition and structure --
	Recursion�-- Example--
	Validation of Algorithms
	Analysis of Algorithms�-- Definition and purpose --
	Analysis of Algorithms�-- Basic how-to --
	Analysis of Algorithms�-- Art of Asymptotic estimation --
	Asymptotics and Big-O Notation
	Asymptotics and Big-Ω Notation
	Asymptotics and Big-𝚯 Notation
	Asymptotics Notes�-- Use of Big-O, Ω and 𝚯 --
	Big-O Notes
	Use of big-o in Complexity Analysis
	Big-O�-- Theorem to help you find a good 𝑔(𝑛) --
	Big-O�-- A rule of thumb to find a good 𝑔(𝑛) --
	Big-O�-- Time of recursive algorithms --
	Big-O�-- The Master Theorem--
	Helpful Formulas for Big-O
	Practice Exercises

