CS 6212 DESIGN AND ANALYSIS OF ALGORITHMS

THIS LECTURE: INTRODUCTION

Instructor: Abdou Youssef

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

- Describe basic algorithmic definitions
- Explain and begin to write pseudo code (pseudo-language)
- Differentiate between functions and procedures
- Show the <u>structure</u> of <u>valid</u> <u>recursion</u>
- Explain what analysis of algorithms means, and begin to utilize related elements, including
 - The big-O notation
 - The Master Theorem
 - Stirling's Approximation
 - Valuable summation formulas widely used in analysis of algorithms

OUTLINE

- Definitions and characteristics of algorithms, functions and procedures
- What is design of algorithms?
- What is analysis of algorithms?
- Pseudo language for expression algorithms
- Recursion
- Asymptotics (Big-O, Big- Ω , and Big- Θ notations): definitions
- Rules, theorems and formulas to help you derive Big-O for time complexity functions

PRELIMINARIES

- Purpose of the course:
 - Learn the <u>design</u> and <u>analysis</u> of <u>algorithms</u>

- Each keyword will be defined next
 - Algorithm
 - Design
 - Analysis

DEFINITION AND CHARACTERISTICS OF "ALGORITHM"

• Definition of Algorithm

- A precise statement to solve a problem on a computer
- A sequence of definite instructions to do a certain job
- Characteristics of Algorithms and Operations
 - Definiteness of each operation (i.e., clarity, unambiguity, single meaning)

More on that later

- Effectiveness (i.e., doability on a computer)
- Termination in a finite amount of time
- An algorithm has zero or more input, one or more output
- Special forms of algorithms:
 - Functions and procedures

Contrast with a program: Does a program have to terminate?

Example of algorithm that takes 0 input?

DESIGN OF ALGORITHMS

- To <u>design</u> (an algorithm) for a problem means to:
 - Devise a method, using potentially a standard design technique, for solving the problem
 - Express the design (in a <u>pseudo language</u>, flowchart, etc.)
 - Validate the design/algorithm:Proof of correctness

- Note:
 - Implementation of algorithm often means coding it in a high-level programming language like C/C++, java, Python, etc.
 - Bulk of the course: learning standard algorithm-design techniques

DESIGN TECHNIQUES THAT WILL BE COVERED IN THIS COURSE

- Divide and conquer
- The greedy method
- Dynamic programming
- Graph traversal
- Backtracking
- Branch and bound

ANALYSIS OF ALGORITHMS

- What does "analysis" mean in general? (not just in the context of algorithms)
- Analysis of an algorithm means:
 - Determination time and space (i.e., memory) requirements of the algorithm
- Since memory has become abundant and cheap,
 - Analysis of algorithms is often reduced to just time analysis
- Fancy terms:
 - Time *complexity* analysis: determine the time requirements of an algorithm
 - Space *complexity* analysis: determine the space/memory requirements of an algorithm
- Complexity analysis is usually expressed in Big-O
 - giving only rough estimates
 - Caring more about asymptotic growth (i.e., growth trend as input size grows large)

More on Big-O later

EXPRESSION OF ALGORITHMS -- PSEUDO LANGUAGE SYNTAX --

- Notes:
 - Words in **bold** are reserved words
 - We don't care if instructions are ended with semicolons (;) but it is preferred
- Variable declaration:

• integer x, y;	or	<pre>int x, y;</pre>		
• real x, y;	or	float x, y;	or	double x,y;
 boolean a , b; 	or	bool a, b;		

- character z; or char z;
- **string** s;

• generic x; // if don't know/care about specific type, or if code works on several types

- Arrays: int A[1:n], B[4:10]; char C[1:n]; and the like.
- Operations: +, -, *, /, ++, --, % (or mod or modulo), **and** (&, &&), **or** (|, ||), **not**
- Relations: <, <=, >, >=, ==, != (or ≠)

PSEUDO LANGUAGE - **ASSIGNMENTS** -

- Assignments:
 - X = Expression; or X := Expression; or $X \leftarrow Expression;$
 - X **op=** Expr; // means: X = X **op** Expr; **op** can be: +, -, *, /
- Examples:
 - x = 1+3*4;
 - y=2*x-5;
 - z=z+1;
 - x += 5; // same as: x=x+5;
 - x=funct(a,b,c); // function call to a function "funct". More on that later

PSEUDO LANGUAGE - CONTROL STRUCTURES: CONDITIONS -

if <i>condition</i> then	if condition l then
a sequence of statements;	a sequence of statements;
[else	elseif condition2 then
a sequence of statements;]	a sequence of statements;
endif	
	elseif condition k then
Note: Things between brackets [] are optional	a sequence of statements;
	[else
	a sequence of statements;]
	endif
case x:	case:
Value1: statements; [break;]	<i>Cond1</i> : statements; [break;]
•••	•••
Valuek: statements; [break;]	Condk: statements; [break;]
endcase	[Default: statements; [break;]]
	endcase ¹¹

PSEUDO LANGUAGE - CONTROL STRUCTURES: LOOPS -

while <i>condition</i> do	loop
a sequence of statements;	a sequence of statements;
endwhile	until <i>condition</i> ;
for i= m to n do	for i= m to n [step d] do
a sequence of statements;	a sequence of statements;
endfor	endfor

PSEUDO LANGUAGE -- INPUT-OUTPUT --

- Input
 - read(X); // X is a variable or array or even an elaborate structure. We'll rarely use it
- Output
 - **print**(data);
 - write(data, file); // data can numeric or strings

PSEUDO LANGUAGE -- FUNCTIONS AND PROCEDURES: DEFINITION --

- **Function**: An algorithm that
 - takes zero or more input parameters,
 - returns explicitly <u>one</u> output to the calling algorithm, and
 - can be called by other algorithms, which must provide the input parameters
- **Procedure**: An algorithms that
 - takes zero or more input parameters, and
 - computes one or more outputs by
 - writing into global variables (aka, side effect), and/or
 - Storing output in output parameters.
 - can be called by other algorithms, which must provide the input and output parameters
- More details and examples will follow after we see the pseudo-language

PSEUDO LANGUAGE -- FUNCTIONS AND PROCEDURES: SYNTAX --

function nam	ne(parameters)	// ok if you use "func" instead of "function"	
begin	// Ok to enclo	se code with braces {} instead of begin end	
variab	le declarations;		
sequer	nce of statements		
returr	n (value);		
end name			
procedure no	ame(input param	is; output params; in-out params)	
begin		// Ok if you use " proc " instead of " procedure "	
variab	le declarations;	// Ok to enclose code with braces {} instead of begin er	nd
seque	nce of statements	· ·	
end name			

PSEUDO LANGUAGE -- FUNCTIONS AND PROCEDURES: EXAMPLES --

function <i>max</i> (A[1:n])	procedure <i>max</i> (input A[1:n]; output M)
begin	begin
generic x=A[1]; // max so far	int i;
int i;	M=A[1];
for i=2 to n do	for i=2 to n do
if (x <a[i]) th="" then<=""><th>if (M<a[i]) th="" then<=""></a[i])></th></a[i])>	if (M <a[i]) th="" then<=""></a[i])>
x=A[i];	M = A[i];
endif	endif
endfor	endfor // output is stored in M
return (x); // observe the " return "	end max // observe: no "return" statement
end max	

PSEUDO LANGUAGE -- ANOTHER PROC. EX.: IN-OUT PARAMETERS --

Procedure swap(**in-out x,y**) // swaps the values of x and y in place

Begin

generic temp;

temp=x;

x=y;

y=temp;

end swap

RECURSION -- **DEFINITION AND STRUCTURE** --

- **Definition**: A *recursive algorithm* is an algorithm that calls itself on "smaller" input (smaller in size or value(s) or both).
- Structure of recursive algorithms:

```
Algorithm name(input)
```

```
begin
```

basis step; // for when the input is the smallest (in size/value); no calls to <u>name(...)</u>.

name (smaller input) // A recursive call: the same algorithm <u>name</u> appears in the body

// there can be more statements and more recursive calls here

// the result of each recursive call is called a *subsolution*

Combine subsolutions; // or process subsolution(s) further

end

RECURSION -- EXAMPLE--

// finds the max of A[i], A[i+1], A[i+2], ..., A[j]

function max(input A[i:j])
begin

```
generic x, y;
if (i==j) then
                 //input size is 1, which is the smallest
        return A[i];
endif
int m = (i+j)/2;
x=max(A[i,m]);
                          // recursive call returning max of 1^{st} half of the array
                          // recursive call returning max of 2<sup>nd</sup> half of the array
y=max(A[m+1,j]);
//next, merge the two sub-solutions into a global solution
if (x < y) then
         return y;
else
         return x;
endif
```

end max

VALIDATION OF ALGORITHMS

• Validation: Proof of Correctness

- Often through proof by induction on the input size, such as in:
 - Recursive algorithms
 - Divide and conquer algorithms
 - Greedy algorithms
 - Dynamic programming algorithms
 - Sometimes when proving optimality of solutions
- Also, deductive methods of proofs.

ANALYSIS OF ALGORITHMS -- DEFINITION AND PURPOSE --

- What: estimation of time and space (memory) requirements of the algorithm
- Reason/Purpose
 - Early estimation of performance to see if the algorithm meets speed requirements <u>before</u> any further investment of effort into the algorithm (i.e., before implementation))
 - If the algorithm is not fast enough, the designer must come up with <u>faster</u> algorithms
 - Complexity analysis is a way for comparing algorithms.:
 - one (or several competing designers) may design alternative algorithms for the same problem
 - you need to determine which to choose.
 - typically the fastest algorithm (and/or least demanding in memory) is chosen.

ANALYSIS OF ALGORITHMS -- BASIC HOW-TO --

- Time complexity T(n):
 - Number of operations in the algorithm, as a function of the input size.
 - Random access memory (RAM) model: Each of the arithmetic/Boolean operations and each of the relations (e.g., comparisons) are counted as one operation
- Space complexity S(n): number of memory words needed by the algorithm

• Example:	function max(A[1:n])	Time analysis:
	begin	• n-l comparisons
	generic x=A[1]; // max so far	• n assignments
	for i=2 to n do	• Thus: $T(n)=(n-1)+n=2n-1$
	if (x <a[i]) th="" then<=""><th></th></a[i])>	
	x=A[i];	Space analysis:
	endif	• Only one variable declared: x
	endfor	• Thus: $S(n)=1$
	return (x);	If take input size into account:
	end max	S(n)=n+1

ANALYSIS OF ALGORITHMS -- ART OF ASYMPTOTIC ESTIMATION --

- Since analysis is to determine if alg is fast enough or to choose b/w competing algs:
 - the time analysis need not be very accurate (down to the exact number of operations)
 - rather, an approximation of time is sufficient, and is often more convenient to derive
- Also, since speed usually matters more when input size n is large
 - we are more concerned about the "order of growth" of the time function T(n), or as typically called, the *asymptotic behavior* of the T(n).
- Since computers vary in speed from model to model and from generation to generation, and the variation is by a constant factor (with respect to input size):
 - we can (and should) ignore constant factors in time estimations, and
 - focus on the order of growth rather than the precise time in micro/nano-seconds.
- Therefore, a notation for approximation, for being "carefully careless", is needed: Big-O

ASYMPTOTICS AND BIG-O NOTATION

• **Definition**: let f(n) and g(n) be two functions of n (n is usually the input size). We say f(n) = O(g(n))

if \exists an integer n_0 and a positive constant k such that $|f(n)| \leq k|g(n)| \quad \forall n \geq n_0$.

- Examples:
 - $3n + 1 = O(n^2)$ since $3n + 1 \le 3n^2 \quad \forall n \ge 2, n_0 = 2, k = 3$.

 $f(n) = 3n + 1, g(n) = n^2, |f(n)| \le 3|g(n)| \forall n \ge 2$

• 3n + 6 = O(n) because $3n + 6 \le 4n \quad \forall n \ge 6, n_0 = 6, k = 4$.

 $f(n) = 3n + 6, g(n) = n, |f(n)| \le 4|g(n)| \ \forall n \ge 6$

24

∃: there exists

 \forall : for every

ASYMPTOTICS AND BIG- Ω **NOTATION**

• **Definition**: let f(n) and g(n) as above. We say that

 $f(n) = \Omega(g(n))$

if \exists an integer n_0 and a positive constant k such that $|f(n)| \ge k|g(n)| \quad \forall n \ge n_0$.

• Examples:

•
$$\frac{1}{3}n^2 = \Omega(n)$$
 because $\frac{1}{3}n^2 \ge n \ \forall n \ge 3$. $n_0 = 3, k = 1$.
$$f(n) = \frac{1}{3}n^2, g(n) = n, |f(n)| \ge |g(n)| \ \forall n \ge 3$$

• $3n + 6 = \Omega(n)$ because $3n + 6 \ge 3n \quad \forall n \ge 1$. $n_0 = 1, k = 3$.

 $f(n) = 3n + 6, g(n) = n, |f(n)| \ge 3|g(n)| \ \forall n \ge 1$

ASYMPTOTICS AND BIG-O NOTATION

• **Definition**: let f(n) and g(n) as above. We say that

 $f(n) = \Theta(g(n))$

if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. That is,

if \exists an integer n_0 and two positive constant k_1 and k_2 such that

 $k_1|g(n)| \le |f(n)| \le k_2|g(n)| \quad \forall n \ge n_0.$

• **Example**: $3n + 6 = \Theta(n)$ because 3n + 6 = O(n) and $3n + 6 = \Omega(n)$ as seen above

ASYMPTOTICS NOTES -- USE OF BIG-O, Ω AND Θ --

• For most of the semester, we will be using the Big-O notation, but not much the Big- Ω or the Big- Θ

• The Big- Ω or the Big- Θ will be used in Lower Bound Theory near the end of the semester

BIG-O NOTES

• Observation (Transitivity of the Big-O):

- If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
- Proof: An exercise
- Example:
 - Take f(n) = 3n + 4, g(n) = n, $h(n) = n^2$
 - f(n) = O(g(n)), i.e., 3n + 4 = O(n) because $3n + 4 \le 7n \forall n \ge 1$ i.e., $|f(n)| \le 7|g(n)|\forall n \ge 1$
 - $g(n) = O(h(n)), i. e., n = O(n^2)$ because $n \le n^2 \forall n \ge 1$
 - $f(n) = O(h(n)), i.e., 3n + 4 = O(n^2)$. (You can verify that $3n + 4 \le 7n^2 \forall n \ge 1$)
 - Question: which is preferable (more informative) to say:
 - 3n + 4 = O(n), or
 - $3n + 4 = O(n^2)$?

USE OF BIG-O IN COMPLEXITY ANALYSIS

- 1. Given an algorithm that you want to analyze
- You derive an estimate of its time complexity, T(n), as a (possibly messy) expression of input size n
 - Example: $T(n) = 3n^{2.7} + n\sqrt{n} + 7n \log n$
- 3. View the T(n) as your f(n) and go find a much simpler function/expression g(n)such that f(n) = O(g(n))**Choose the tightest and simplest** g(n) you can find
 - Example: for $T(n) = 3n^2 + n\sqrt{n} + 7n \log n$, take $g(n) = n^2$
 - Exercise: show that $3n^2 + n\sqrt{n} + 7n \log n \le 11n^2$
 - As a result, you can conclude that $T(n) = O(n^2)$
 - Of course, one can also show that $T(n) = O(n^3)$ Which is better to say: $T(n) = O(n^2)$ or $T(n) = O(n^3)$? Why?

BIG-O

-- THEOREM TO HELP YOU FIND A GOOD g(n) --

- Theorem: Let f(n) = a_mn^m + a_{m-1}n^{m-1} + ··· + a₁n¹ + a₀ be a polynomial (in n) of degree m, where m is a positive constant integer, and a_m, a_{m-1}, ..., a₀ are constants. Then f(n) = O(n^m).
- **Proof**:

$$\begin{split} |f(n)| &\leq |a_m|n^m + |a_{m-1}|n^{m-1} + \dots + |a_1|n^1 + |a_0| \\ &\leq |a_m|n^m + |a_{m-1}|n^m + \dots + |a_1|n^m + |a_0|n^m \\ &\leq (|a_m| + |a_{m-1}| + \dots + |a_1| + |a_0|)n^m \leq kn^m \end{split}$$

where $k = |a_m| + |a_{m-1}| + \dots + |a_1| + |a_0|$ and $n \ge 1$.

Therefore, by definition, $f(n) = O(n^m)$. Q.E.D.

BIG-O

-- A RULE OF THUMB TO FIND A GOOD g(n) --

- General rule of thumb: If the time T(n) is a sum of a <u>constant</u> number of terms, you can:
 - keep the largest-order term,
 - drop all the other terms,
 - drop the constant factor of the largest order term,
 - and thus get a simple Big-O form for T(n).
- **Example**: If $T(n) = 3n^{2.7} + n\sqrt{n} + 7n \log n$, then $T(n) = O(n^{2.7})$. Why?
 - $n\sqrt{n} \le n.n = n^2 \le n^{2.7}$
 - $n \log n \le n . n = n^2 \le n^{2.7}$
 - Therefore: $3n^{2.7} + n\sqrt{n} + 7n\log n \le 3n^{2.7} + n^{2.7} + 7n^{2.7} = 11n^{2.7}$, i.e., $|T(n)| \le 11|n^{2.7}| \forall n \ge 1$
 - Therefore: $T(n) = O(n^{2.7})$
- **Question**: In the rule of thumb above, can you drop a <u>variable</u> number of terms?

BIG-O

-- TIME OF RECURSIVE ALGORITHMS --

- The time complexity of a recursive algorithm is often easier to calculate by:
 - 1. deriving a recurrence relation (i.e., express T(n) in terms of T(n-1) or T(n/2) or or T(m) for some m < n), and then
 - 2. solve the recurrence relation

• You will learn how to solve recurrence relations in this course

- Still, there is a theorem, the *Master Theorem*
 - helpful for solving recurrence relations that emerge in time complexity analysis of many recursive (e.g., divide and conquer) algorithms

BIG-O -- THE MASTER THEOREM--

• The Master theorem: Let $a \ge 1$ and $b \ge 1$ be two constants, f(n) a function, and T(n) a function of non-negative *n* defined by the following recurrence relation:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 for $n > n_0$

where n_0 is some constant, and the value of T(n) for $n \le n_0$ is \le some constant c. The precise values of those n_0 and c won't matter. Note that $\frac{n}{b}$ is taken to mean $\lfloor \frac{n}{b} \rfloor$ or $\lfloor \frac{n}{b} \rfloor$.

Then T(n) has the following asymptotic bounds:

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- Please brush up on logarithms

By default, log is base 2: $\log n = \log_2 n$

- If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 for all sufficiently large n, then $T(n) = \Theta(f(n))$.

HELPFUL FORMULAS FOR BIG-O

- Stirling's Approximation: $n! \cong \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, where e=2.718... is the base of natural logarithm
- Useful summation formulas:
 - $1+2+3+\dots+n=\frac{n(n+1)}{2}$

•
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- $1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$
- $\binom{n}{k} = \frac{n!}{k! (n-k)!}$
- $1^k + 2^k + \dots + n^k = O(n^{k+1})$, where k is a positive constant integer
- $1 + x + x^2 + x^3 \dots + x^n = \frac{x^{n+1}-1}{x-1}$, for all $x \neq 1$.
- $1 + 2x + 3x^2 \dots + nx^{n-1} = \frac{nx^{n+1} (n+1)x^n + 1}{(x-1)^2}$, for all $x \neq 1$.

•
$$(a+b)^n = \binom{n}{n} a^n b^0 + \binom{n}{n-1} a^{n-1} b^1 + \binom{n}{n-2} a^{n-2} b^2 + \dots + \binom{n}{k} a^{n-k} b^k + \dots + \binom{n}{0} a^0 b^n$$

34

 $n! = 1 \times 2 \times 3 \times \cdots \times n$

PRACTICE EXERCISES

- **Exercise**: Prove the summation formulas (on the previous slide) by induction on n
- Note: don't turn in this exercise. Rather, it is just for your practice