
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

THIS LECTURE: INTRODUCTION

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms Introduction

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe basic algorithmic definitions
• Explain and begin to write pseudo code (pseudo-language)

• Differentiate between functions and procedures
• Show the structure of valid recursion

• Explain what analysis of algorithms means, and begin to utilize related
elements, including

• The big-O notation
• The Master Theorem
• Stirling’s Approximation
• Valuable summation formulas widely used in analysis of algorithms

CS 6212 Design and Analysis of Algorithms Introduction

2

OUTLINE

• Definitions and characteristics of algorithms, functions and procedures

• What is design of algorithms?

• What is analysis of algorithms?

• Pseudo language for expression algorithms

• Recursion

• Asymptotics (Big-O, Big-Ω, and Big-Θ notations): definitions

• Rules, theorems and formulas to help you derive Big-O for time
complexity functions

CS 6212 Design and Analysis of Algorithms Introduction

3

PRELIMINARIES

• Purpose of the course:

• Learn the design and analysis of algorithms

• Each keyword will be defined next

• Algorithm

• Design

• Analysis

CS 6212 Design and Analysis of Algorithms Introduction

4

DEFINITION AND CHARACTERISTICS OF
“ALGORITHM”

• Definition of Algorithm
• A precise statement to solve a problem on a computer

• A sequence of definite instructions to do a certain job

• Characteristics of Algorithms and Operations
• Definiteness of each operation (i.e., clarity, unambiguity, single meaning)

• Effectiveness (i.e., doability on a computer)

• Termination in a finite amount of time

• An algorithm has zero or more input, one or more output

• Special forms of algorithms:

• Functions and procedures

CS 6212 Design and Analysis of Algorithms Introduction

5

Contrast with a program:
Does a program have to terminate?

Example of algorithm that
takes 0 input?

More on that later

DESIGN
OF ALGORITHMS

• To design (an algorithm) for a problem means to:
• Devise a method, using potentially a standard design technique, for solving

the problem

• Express the design (in a pseudo language, flowchart, etc.)
• Validate the design/algorithm: Proof of correctness

• Note:
• Implementation of algorithm often means coding it in a high-level

programming language like C/C++, java, Python, etc.

• Bulk of the course: learning standard algorithm-design techniques

CS 6212 Design and Analysis of Algorithms Introduction

6

DESIGN TECHNIQUES
THAT WILL BE COVERED IN THIS COURSE

• Divide and conquer

• The greedy method

• Dynamic programming

• Graph traversal

• Backtracking

• Branch and bound

CS 6212 Design and Analysis of Algorithms Introduction

7

ANALYSIS
OF ALGORITHMS

• What does “analysis” mean in general? (not just in the context of algorithms)

• Analysis of an algorithm means:
• Determination time and space (i.e., memory) requirements of the algorithm

• Since memory has become abundant and cheap,
• Analysis of algorithms is often reduced to just time analysis

• Fancy terms:
• Time complexity analysis: determine the time requirements of an algorithm

• Space complexity analysis: determine the space/memory requirements of an algorithm

• Complexity analysis is usually expressed in Big-O
• giving only rough estimates

• Caring more about asymptotic growth (i.e., growth trend as input size grows large)

CS 6212 Design and Analysis of Algorithms Introduction

8

More on Big-O later

EXPRESSION OF ALGORITHMS
-- PSEUDO LANGUAGE SYNTAX --

• Notes:
• Words in bold are reserved words

• We don’t care if instructions are ended with semicolons (;) but it is preferred

• Variable declaration:
• integer x, y; or int x, y;
• real x, y; or float x, y; or double x,y;
• boolean a , b; or bool a, b;
• character z; or char z;
• string s;
• generic x;
• Arrays: int A[1:n], B[4:10]; char C[1:n]; and the like.

• Operations: +, -, *, /, ++, --, % (or mod or modulo), and (&, &&), or (|, ||), not

• Relations: <, <=, >, >=, ==, != (or ≠)

CS 6212 Design and Analysis of Algorithms Introduction

9

// if don’t know/care about specific type, or if code works on several types

PSEUDO LANGUAGE
- ASSIGNMENTS -

• Assignments:

• X = Expression; or X := Expression; or X  Expression;

• X op= Expr; // means: X = X op Expr; op can be: +, -, *, /

• Examples:

• x = 1+3*4;

• y=2*x-5;

• z= z+1;

• x += 5; // same as: x=x+5;

• x=funct(a,b,c); // function call to a function “funct”. More on that later

CS 6212 Design and Analysis of Algorithms Introduction

10

PSEUDO LANGUAGE
- CONTROL STRUCTURES: CONDITIONS -

if condition then
a sequence of statements;

[else
a sequence of statements;]

endif

Note: Things between brackets […] are optional

if condition1 then
a sequence of statements;

elseif condition2 then
a sequence of statements;

……
elseif condition k then

a sequence of statements;
[else

a sequence of statements;]
endif

case x:
Value1: statements; [break;]
…
Valuek: statements; [break;]

endcase

case:
Cond1: statements; [break;]
…
Condk: statements; [break;]
[Default: statements; [break;]]

endcase
CS 6212 Design and Analysis of Algorithms Introduction

11

PSEUDO LANGUAGE
- CONTROL STRUCTURES: LOOPS -

while condition do
a sequence of statements;

endwhile

loop
a sequence of statements;

until condition;

for i= m to n do
a sequence of statements;

endfor

for i= m to n [step d] do
a sequence of statements;

endfor

CS 6212 Design and Analysis of Algorithms Introduction

12

PSEUDO LANGUAGE
-- INPUT-OUTPUT --

• Input

• read(X); // X is a variable or array or even an elaborate structure. We’ll rarely use it

• Output

• print(data);

• write(data, file); // data can numeric or strings

CS 6212 Design and Analysis of Algorithms Introduction

13

PSEUDO LANGUAGE
-- FUNCTIONS AND PROCEDURES: DEFINITION --

• Function: An algorithm that

• takes zero or more input parameters,

• returns explicitly one output to the calling algorithm, and

• can be called by other algorithms, which must provide the input parameters

• Procedure: An algorithms that

• takes zero or more input parameters, and

• computes one or more outputs by

• writing into global variables (aka, side effect), and/or

• Storing output in output parameters.

• can be called by other algorithms, which must provide the input and output parameters

• More details and examples will follow after we see the pseudo-language

CS 6212 Design and Analysis of Algorithms Introduction

14

PSEUDO LANGUAGE
-- FUNCTIONS AND PROCEDURES: SYNTAX --

function name(parameters)
begin

variable declarations;
sequence of statements;
return (value);

end name

procedure name(input params; output params; in-out params)
begin

variable declarations;
sequence of statements;

end name

CS 6212 Design and Analysis of Algorithms Introduction

15

// Ok to enclose code with braces {…} instead of begin … end
// ok if you use “func” instead of “function”

// Ok if you use “proc” instead of “procedure”
// Ok to enclose code with braces {…} instead of begin … end

PSEUDO LANGUAGE
-- FUNCTIONS AND PROCEDURES: EXAMPLES --

function max(A[1:n])
begin

generic x=A[1]; // max so far
int i;
for i=2 to n do

if (x<A[i]) then
x=A[i];

endif
endfor
return (x); // observe the “return”

end max

procedure max(input A[1:n]; output M)
begin

int i;
M=A[1];
for i=2 to n do

if (M<A[i]) then
M=A[i];

endif
endfor // output is stored in M

end max // observe: no “return” statement

CS 6212 Design and Analysis of Algorithms Introduction

16

PSEUDO LANGUAGE
-- ANOTHER PROC. EX.: IN-OUT PARAMETERS --

Procedure swap(in-out x,y) // swaps the values of x and y in place

Begin

generic temp;

temp=x;

x=y;

y=temp;

end swap

CS 6212 Design and Analysis of Algorithms Introduction

17

RECURSION
-- DEFINITION AND STRUCTURE --

• Definition: A recursive algorithm is an algorithm that calls itself on “smaller” input
(smaller in size or value(s) or both).

• Structure of recursive algorithms:
Algorithm name(input)

begin

basis step;

name (smaller input);

Combine subsolutions; // or process subsolution(s) further

end

CS 6212 Design and Analysis of Algorithms Introduction

18

// for when the input is the smallest (in size/value); no calls to name(…).

// A recursive call: the same algorithm name appears in the body

// the result of each recursive call is called a subsolution

// there can be more statements and more recursive calls here

RECURSION
-- EXAMPLE--

function max(input A[i:j]) // finds the max of A[i], A[i+1], A[i+2], … , A[j]
begin

generic x, y;
if (i==j) then //input size is 1, which is the smallest

return A[i];
endif
int m=(i+j)/2;
x=max(A[i,m]); // recursive call returning max of 1st half of the array
y=max(A[m+1,j]); // recursive call returning max of 2nd half of the array
//next, merge the two sub-solutions into a global solution
if (x<y) then

return y;
else

return x;
endif

end max

CS 6212 Design and Analysis of Algorithms Introduction

19

VALIDATION OF ALGORITHMS

• Validation: Proof of Correctness

• Often through proof by induction on the input size, such as in:

• Recursive algorithms

• Divide and conquer algorithms

• Greedy algorithms

• Dynamic programming algorithms

• Sometimes when proving optimality of solutions

• Also, deductive methods of proofs.

CS 6212 Design and Analysis of Algorithms Introduction

20

ANALYSIS OF ALGORITHMS
-- DEFINITION AND PURPOSE --

• What: estimation of time and space (memory) requirements of the
algorithm

• Reason/Purpose
• Early estimation of performance to see if the algorithm meets speed requirements before

any further investment of effort into the algorithm (i.e., before implementation))

• If the algorithm is not fast enough, the designer must come up with faster algorithms

• Complexity analysis is a way for comparing algorithms.:

• one (or several competing designers) may design alternative algorithms for the same problem

• you need to determine which to choose.

• typically the fastest algorithm (and/or least demanding in memory) is chosen.

CS 6212 Design and Analysis of Algorithms Introduction

21

ANALYSIS OF ALGORITHMS
-- BASIC HOW-TO --

• Time complexity 𝑇𝑇(𝑛𝑛):

• Number of operations in the algorithm, as a function of the input size.

• Random access memory (RAM) model: Each of the arithmetic/Boolean operations and each
of the relations (e.g., comparisons) are counted as one operation

• Space complexity 𝑆𝑆(𝑛𝑛): number of memory words needed by the algorithm

• Example:

CS 6212 Design and Analysis of Algorithms Introduction

22

function max(A[1:n])
begin

generic x=A[1]; // max so far
for i=2 to n do

if (x<A[i]) then
x=A[i];

endif
endfor
return (x);

end max

Time analysis:
• n-1 comparisons
• n assignments
• Thus: T(n)=(n-1)+n=2n-1

Space analysis:
• Only one variable declared: x
• Thus: S(n)=1
• If take input size into account:

S(n)=n+1

ANALYSIS OF ALGORITHMS
-- ART OF ASYMPTOTIC ESTIMATION --

• Since analysis is to determine if alg is fast enough or to choose b/w competing algs:

• the time analysis need not be very accurate (down to the exact number of operations)

• rather, an approximation of time is sufficient, and is often more convenient to derive

• Also, since speed usually matters more when input size n is large

• we are more concerned about the “order of growth” of the time function 𝑇𝑇(𝑛𝑛), or as typically
called, the asymptotic behavior of the 𝑇𝑇(𝑛𝑛).

• Since computers vary in speed from model to model and from generation to
generation, and the variation is by a constant factor (with respect to input size):

• we can (and should) ignore constant factors in time estimations, and

• focus on the order of growth rather than the precise time in micro/nano-seconds.

• Therefore, a notation for approximation, for being “carefully careless”, is needed: Big-O

CS 6212 Design and Analysis of Algorithms Introduction

23

ASYMPTOTICS AND BIG-O NOTATION

• Definition: let 𝑓𝑓 𝑛𝑛 and 𝑔𝑔 𝑛𝑛 be two functions of n (n is usually the input size). We say
𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛)

if ∃ an integer 𝑛𝑛0 and a positive constant 𝑘𝑘 such that 𝑓𝑓 𝑛𝑛 ≤ 𝑘𝑘 𝑔𝑔 𝑛𝑛 ∀𝑛𝑛 ≥ 𝑛𝑛0.

• Examples:

• 3𝑛𝑛+ 1 = 𝑂𝑂(𝑛𝑛2) since 3𝑛𝑛+ 1 ≤ 3𝑛𝑛2 ∀𝑛𝑛 ≥ 2. 𝑛𝑛0 = 2,𝑘𝑘 = 3.

• 3𝑛𝑛+ 6 = 𝑂𝑂(𝑛𝑛) because 3𝑛𝑛+ 6 ≤ 4𝑛𝑛 ∀𝑛𝑛 ≥ 6. 𝑛𝑛0 = 6,𝑘𝑘 = 4.

CS 6212 Design and Analysis of Algorithms Introduction

24

𝑓𝑓 𝑛𝑛 = 3𝑛𝑛 + 1,𝑔𝑔 𝑛𝑛 = 𝑛𝑛2 , 𝑓𝑓 𝑛𝑛 ≤ 3 𝑔𝑔 𝑛𝑛 ∀𝑛𝑛 ≥ 2

𝑓𝑓 𝑛𝑛 = 3𝑛𝑛 + 6,𝑔𝑔 𝑛𝑛 = 𝑛𝑛, 𝑓𝑓 𝑛𝑛 ≤ 4 𝑔𝑔 𝑛𝑛 ∀𝑛𝑛 ≥ 6

∃: there exists
∀: for every

ASYMPTOTICS AND BIG-Ω NOTATION

• Definition: let 𝑓𝑓 𝑛𝑛 and 𝑔𝑔 𝑛𝑛 as above. We say that
𝑓𝑓 𝑛𝑛 = Ω(𝑔𝑔 𝑛𝑛)

if ∃ an integer 𝑛𝑛0 and a positive constant 𝑘𝑘 such that 𝑓𝑓 𝑛𝑛 ≥ 𝑘𝑘 𝑔𝑔 𝑛𝑛 ∀𝑛𝑛 ≥ 𝑛𝑛0.

• Examples:

• 1
3
𝑛𝑛2 = Ω(𝑛𝑛) because 1

3
𝑛𝑛2 ≥ 𝑛𝑛 ∀𝑛𝑛 ≥ 3. 𝑛𝑛0 = 3,𝑘𝑘 = 1.

• 3𝑛𝑛+ 6 = Ω(𝑛𝑛) because 3𝑛𝑛+ 6 ≥ 3𝑛𝑛 ∀𝑛𝑛 ≥ 1. 𝑛𝑛0 = 1,𝑘𝑘 = 3.

CS 6212 Design and Analysis of Algorithms Introduction

25

𝑓𝑓 𝑛𝑛 =
1
3
𝑛𝑛2 ,𝑔𝑔 𝑛𝑛 = 𝑛𝑛, 𝑓𝑓 𝑛𝑛 ≥ 𝑔𝑔 𝑛𝑛 ∀𝑛𝑛 ≥ 3

𝑓𝑓 𝑛𝑛 = 3𝑛𝑛 + 6,𝑔𝑔 𝑛𝑛 = 𝑛𝑛, 𝑓𝑓 𝑛𝑛 ≥ 3 𝑔𝑔 𝑛𝑛 ∀𝑛𝑛 ≥ 1

ASYMPTOTICS AND BIG-𝚯𝚯 NOTATION

• Definition: let 𝑓𝑓 𝑛𝑛 and 𝑔𝑔 𝑛𝑛 as above. We say that
𝑓𝑓 𝑛𝑛 = Θ(𝑔𝑔 𝑛𝑛)

if 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛) and 𝑓𝑓 𝑛𝑛 = Ω(𝑔𝑔 𝑛𝑛). That is,

if ∃ an integer 𝑛𝑛0 and two positive constant 𝑘𝑘1 and 𝑘𝑘2 such that

𝑘𝑘1 𝑔𝑔 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 ≤ 𝑘𝑘2 𝑔𝑔 𝑛𝑛 ∀𝑛𝑛 ≥ 𝑛𝑛0.

• Example: 3𝑛𝑛 + 6 = Θ(𝑛𝑛) because 3𝑛𝑛 + 6 = 𝑂𝑂(𝑛𝑛) and 3𝑛𝑛 + 6 = Ω(𝑛𝑛) as seen above

CS 6212 Design and Analysis of Algorithms Introduction

26

ASYMPTOTICS NOTES
-- USE OF BIG-O, Ω AND 𝚯𝚯 --

• For most of the semester, we will be using the Big-O notation, but not much the Big-Ω
or the Big-Θ

• The Big-Ω or the Big-Θ will be used in Lower Bound Theory near the end of the
semester

CS 6212 Design and Analysis of Algorithms Introduction

27

BIG-O NOTES

• Observation (Transitivity of the Big-O):

• If 𝑓𝑓(𝑛𝑛) = 𝑂𝑂(𝑔𝑔 𝑛𝑛) and 𝑔𝑔 𝑛𝑛 = 𝑂𝑂(ℎ 𝑛𝑛), then 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(ℎ 𝑛𝑛)
• Proof: An exercise

• Example:

• Take 𝑓𝑓 𝑛𝑛 = 3𝑛𝑛+ 4,𝑔𝑔 𝑛𝑛 = 𝑛𝑛,ℎ 𝑛𝑛 = 𝑛𝑛2

• 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛), i.e., 3𝑛𝑛+ 4 = 𝑂𝑂(𝑛𝑛) because 3𝑛𝑛+ 4 ≤ 7𝑛𝑛 ∀𝑛𝑛 ≥ 1 i. e. , 𝑓𝑓 𝑛𝑛 ≤ 7 𝑔𝑔 𝑛𝑛 ∀𝑛𝑛 ≥ 1

• 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 ℎ 𝑛𝑛 , 𝑖𝑖. 𝑒𝑒. ,𝑛𝑛 = 𝑂𝑂 𝑛𝑛2 because 𝑛𝑛 ≤ 𝑛𝑛2 ∀𝑛𝑛 ≥ 1

• 𝑓𝑓 𝑛𝑛 = 𝑂𝑂 ℎ 𝑛𝑛 , 𝑖𝑖. 𝑒𝑒. ,3𝑛𝑛+ 4 = 𝑂𝑂(𝑛𝑛2). (You can verify that 3𝑛𝑛+ 4 ≤ 7𝑛𝑛2 ∀𝑛𝑛 ≥ 1)

• Question: which is preferable (more informative) to say:

• 3𝑛𝑛+ 4 = 𝑂𝑂(𝑛𝑛), or

• 3𝑛𝑛+ 4 = 𝑂𝑂 𝑛𝑛2 ?

CS 6212 Design and Analysis of Algorithms Introduction

28

USE OF BIG-O IN COMPLEXITY ANALYSIS

1. Given an algorithm that you want to analyze

2. You derive an estimate of its time complexity, T(n), as a (possibly messy) expression
of input size n

• Example: 𝑇𝑇 𝑛𝑛 = 3𝑛𝑛2.7 + 𝑛𝑛 𝑛𝑛+ 7𝑛𝑛 log 𝑛𝑛

3. View the 𝑇𝑇 𝑛𝑛 as your 𝑓𝑓 𝑛𝑛 and go find a much simpler function/expression 𝑔𝑔(𝑛𝑛)
such that 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑔𝑔 𝑛𝑛)

• Example: for 𝑇𝑇 𝑛𝑛 = 3𝑛𝑛2 + 𝑛𝑛 𝑛𝑛+ 7𝑛𝑛 log 𝑛𝑛, take 𝑔𝑔 𝑛𝑛 = 𝑛𝑛2

• Exercise: show that 3𝑛𝑛2 + 𝑛𝑛 𝑛𝑛+ 7𝑛𝑛 log 𝑛𝑛 ≤ 11𝑛𝑛2

• As a result, you can conclude that 𝑇𝑇 𝑛𝑛 = 𝑂𝑂(𝑛𝑛2)
• Of course, one can also show that 𝑇𝑇 𝑛𝑛 = 𝑂𝑂(𝑛𝑛3)

CS 6212 Design and Analysis of Algorithms Introduction

29

Which is better to say: 𝑇𝑇 𝑛𝑛 = 𝑂𝑂(𝑛𝑛2) or 𝑇𝑇 𝑛𝑛 = 𝑂𝑂(𝑛𝑛3)? Why?

Choose the tightest and simplest 𝒈𝒈(𝒏𝒏) you can find

BIG-O
-- THEOREM TO HELP YOU FIND A GOOD 𝑔𝑔(𝑛𝑛) --

• Theorem: Let 𝑓𝑓 𝑛𝑛 = 𝑎𝑎𝑚𝑚𝑛𝑛𝑚𝑚 + 𝑎𝑎𝑚𝑚−1𝑛𝑛𝑚𝑚−1 + ⋯+ 𝑎𝑎1𝑛𝑛1 + 𝑎𝑎0 be a polynomial (in n) of
degree m, where m is a positive constant integer, and 𝑎𝑎𝑚𝑚, 𝑎𝑎𝑚𝑚−1 , … , 𝑎𝑎0 are constants.
Then 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝑚𝑚).

• Proof:

𝑓𝑓 𝑛𝑛 ≤ 𝑎𝑎𝑚𝑚 𝑛𝑛𝑚𝑚 + 𝑎𝑎𝑚𝑚−1 𝑛𝑛𝑚𝑚−1 + ⋯+ |𝑎𝑎1 𝑛𝑛1 + |𝑎𝑎0
≤ 𝑎𝑎𝑚𝑚 𝑛𝑛𝑚𝑚 + 𝑎𝑎𝑚𝑚−1 𝑛𝑛𝑚𝑚 + ⋯+ |𝑎𝑎1 𝑛𝑛𝑚𝑚 + |𝑎𝑎0 𝑛𝑛𝑚𝑚

≤ 𝑎𝑎𝑚𝑚 + 𝑎𝑎𝑚𝑚−1 + ⋯+ |𝑎𝑎1 +|𝑎𝑎0 𝑛𝑛𝑚𝑚 ≤ 𝑘𝑘𝑛𝑛𝑚𝑚

where 𝑘𝑘 = 𝑎𝑎𝑚𝑚 + 𝑎𝑎𝑚𝑚−1 + ⋯+ |𝑎𝑎1 +|𝑎𝑎0 and 𝑛𝑛 ≥ 1.

Therefore, by definition, 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝑚𝑚). Q.E.D.

CS 6212 Design and Analysis of Algorithms Introduction

30

BIG-O
-- A RULE OF THUMB TO FIND A GOOD 𝑔𝑔(𝑛𝑛) --

• General rule of thumb: If the time 𝑇𝑇 𝑛𝑛 is a sum of a constant number of terms, you
can:

• keep the largest-order term,

• drop all the other terms,

• drop the constant factor of the largest order term,

• and thus get a simple Big-O form for 𝑇𝑇 𝑛𝑛 .

• Example: If 𝑇𝑇 𝑛𝑛 = 3𝑛𝑛2.7 + 𝑛𝑛 𝑛𝑛 + 7𝑛𝑛 log 𝑛𝑛, then 𝑇𝑇 𝑛𝑛 = 𝑂𝑂(𝑛𝑛2 .7).Why?

• 𝑛𝑛 𝑛𝑛 ≤ 𝑛𝑛.𝑛𝑛 = 𝑛𝑛2 ≤ 𝑛𝑛2.7

• 𝑛𝑛 log 𝑛𝑛 ≤ 𝑛𝑛.𝑛𝑛 = 𝑛𝑛2 ≤ 𝑛𝑛2.7

• Therefore: 3𝑛𝑛2.7 + 𝑛𝑛 𝑛𝑛+ 7𝑛𝑛 log 𝑛𝑛 ≤ 3𝑛𝑛2.7+𝑛𝑛2.7+7𝑛𝑛2.7 = 11𝑛𝑛2.7, i.e., 𝑇𝑇 𝑛𝑛 ≤ 11 𝑛𝑛2.7 ∀𝑛𝑛 ≥ 1
• Therefore: 𝑇𝑇 𝑛𝑛 = 𝑂𝑂(𝑛𝑛2.7)

• Question: In the rule of thumb above, can you drop a variable number of terms?

CS 6212 Design and Analysis of Algorithms Introduction

31

BIG-O
-- TIME OF RECURSIVE ALGORITHMS --

• The time complexity of a recursive algorithm is often easier to calculate by:

1. deriving a recurrence relation (i.e., express 𝑇𝑇 𝑛𝑛 in terms of 𝑇𝑇 𝑛𝑛 − 1 or 𝑇𝑇 𝑛𝑛/2 or
𝑜𝑜𝑜𝑜 𝑇𝑇 𝑚𝑚 for some 𝑚𝑚 < 𝑛𝑛), and then

2. solve the recurrence relation

• You will learn how to solve recurrence relations in this course

• Still, there is a theorem, the Master Theorem
• helpful for solving recurrence relations that emerge in time complexity analysis of many

recursive (e.g., divide and conquer) algorithms

CS 6212 Design and Analysis of Algorithms Introduction

32

BIG-O
-- THE MASTER THEOREM--

• The Master theorem: Let 𝑎𝑎 ≥ 1 and 𝑏𝑏 ≥ 1 be two constants, 𝑓𝑓 𝑛𝑛 a function, and 𝑇𝑇(𝑛𝑛) a
function of non-negative n defined by the following recurrence relation:

𝑇𝑇 𝑛𝑛 = 𝑎𝑎𝑎𝑎
𝑛𝑛
𝑏𝑏

+ 𝑓𝑓 𝑛𝑛 for 𝑛𝑛 > 𝑛𝑛0

where 𝑛𝑛0 is some constant, and the value of 𝑇𝑇 𝑛𝑛 for 𝑛𝑛 ≤ 𝑛𝑛0 is ≤ some constant 𝑐𝑐. The

precise values of those 𝑛𝑛0 and c won’t matter. Note that
𝑛𝑛
𝑏𝑏

is taken to mean ⌊𝑛𝑛
𝑏𝑏
⌋ or ⌈𝑛𝑛

𝑏𝑏
⌉.

Then 𝑇𝑇 𝑛𝑛 has the following asymptotic bounds:

• If 𝑓𝑓 𝑛𝑛 = 𝑂𝑂(𝑛𝑛log𝑏𝑏𝑎𝑎 −𝜀𝜀) for some constant 𝜀𝜀 > 0, then 𝑇𝑇 𝑛𝑛 = Θ(𝑛𝑛log𝑏𝑏𝑎𝑎).

• If 𝑓𝑓 𝑛𝑛 = Θ(𝑛𝑛log𝑏𝑏𝑎𝑎), then 𝑇𝑇 𝑛𝑛 = Θ(𝑛𝑛log𝑏𝑏𝑎𝑎log𝑛𝑛).

• If 𝑓𝑓 𝑛𝑛 = Ω(𝑛𝑛log𝑏𝑏𝑎𝑎 + 𝜀𝜀) for some constant 𝜀𝜀 > 0, and if 𝑎𝑎𝑎𝑎 𝑛𝑛
𝑏𝑏

≤ 𝑐𝑐𝑐𝑐 𝑛𝑛 for some constant c<1 for

all sufficiently large n, then 𝑇𝑇 𝑛𝑛 = Θ 𝑓𝑓 𝑛𝑛 .

CS 6212 Design and Analysis of Algorithms Introduction

33

Please brush up
on logarithms

By default, log is base 2: log𝑛𝑛 = log2 𝑛𝑛

HELPFUL FORMULAS FOR BIG-O

• Stirling’s Approximation: 𝑛𝑛! ≅ 2𝜋𝜋𝜋𝜋 𝑛𝑛
𝑒𝑒

𝑛𝑛
, where e=2.718… is the base of natural logarithm

• Useful summation formulas:

• 1 + 2 + 3 +⋯+𝑛𝑛 = 𝑛𝑛(𝑛𝑛+1)
2

• 12 + 22 +⋯+ 𝑛𝑛2 = 𝑛𝑛(𝑛𝑛+1)(2𝑛𝑛+1)
6

• 13 + 23 +⋯+ 𝑛𝑛3 = 𝑛𝑛(𝑛𝑛+1)
2

2

• 1𝑘𝑘 + 2𝑘𝑘 +⋯+ 𝑛𝑛𝑘𝑘 = 𝑂𝑂(𝑛𝑛𝑘𝑘+1), where k is a positive constant integer

• 1 + 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 … + 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛+1−1
𝑥𝑥−1

, for all 𝑥𝑥 ≠ 1.

• 1 + 2𝑥𝑥+ 3𝑥𝑥2… +𝑛𝑛𝑛𝑛𝑛𝑛−1 = 𝑛𝑛𝑛𝑛𝑛𝑛+1− 𝑛𝑛+1 𝑥𝑥𝑛𝑛+1
(𝑥𝑥−1)2

, for all 𝑥𝑥 ≠ 1.

• (𝑎𝑎+ 𝑏𝑏)𝑛𝑛= 𝑛𝑛
𝑛𝑛 𝑎𝑎𝑛𝑛𝑏𝑏0 + 𝑛𝑛

𝑛𝑛 −1 𝑎𝑎𝑛𝑛−1𝑏𝑏1 + 𝑛𝑛
𝑛𝑛 − 2 𝑎𝑎𝑛𝑛−2𝑏𝑏2 +⋯+ 𝑛𝑛

𝑘𝑘 𝑎𝑎𝑛𝑛−𝑘𝑘𝑏𝑏𝑘𝑘 +⋯+ 𝑛𝑛
0 𝑎𝑎0𝑏𝑏𝑛𝑛

CS 6212 Design and Analysis of Algorithms Introduction

34

𝑛𝑛! = 1 × 2 × 3 ×⋯× 𝑛𝑛
𝑛𝑛
𝑘𝑘 =

𝑛𝑛!
𝑘𝑘! 𝑛𝑛− 𝑘𝑘 !

PRACTICE EXERCISES

• Exercise: Prove the summation formulas (on the previous slide) by induction on n

• Note: don’t turn in this exercise. Rather, it is just for your practice

CS 6212 Design and Analysis of Algorithms Introduction

35

	CS 6212 Design and Analysis of Algorithms��This Lecture: Introduction
	Objectives of this Lecture
	Outline
	Preliminaries
	Definition and Characteristics of “Algorithm”
	Design �of Algorithms
	Design Techniques �That will be covered in this course
	Analysis �of Algorithms
	Expression of Algorithms �-- Pseudo Language Syntax --
	Pseudo Language�- Assignments -
	Pseudo Language�- Control Structures: Conditions -
	Pseudo Language�- Control Structures: Loops -
	Pseudo Language�-- Input-Output --
	Pseudo Language�-- Functions and Procedures: Definition --
	Pseudo Language�-- Functions and Procedures: Syntax --
	Pseudo Language�-- Functions and Procedures: Examples --
	Pseudo Language�-- Another Proc. Ex.: in-out PArameters --
	Recursion�-- definition and structure --
	Recursion�-- Example--
	Validation of Algorithms
	Analysis of Algorithms�-- Definition and purpose --
	Analysis of Algorithms�-- Basic how-to --
	Analysis of Algorithms�-- Art of Asymptotic estimation --
	Asymptotics and Big-O Notation
	Asymptotics and Big-Ω Notation
	Asymptotics and Big-𝚯 Notation
	Asymptotics Notes�-- Use of Big-O, Ω and 𝚯 --
	Big-O Notes
	Use of big-o in Complexity Analysis
	Big-O�-- Theorem to help you find a good 𝑔(𝑛) --
	Big-O�-- A rule of thumb to find a good 𝑔(𝑛) --
	Big-O�-- Time of recursive algorithms --
	Big-O�-- The Master Theorem--
	Helpful Formulas for Big-O
	Practice Exercises

